
Machine-Learning-Driven Runtime Optimization of BLAS Level 3
on Modern Multi-Core Systems

Yufan Xia, Giuseppe Barca
E-mail: xiayufan12345@outlook.com, giuseppe.barca@unimelb.edu.au

Training Dataset Size:

Around 1100 data points
for each BLAS operation.

Data Gathering Cost:

Around 6 hours with 15
nodes on both platforms

Model Training and
Selection Cost:

Around 4 hours on one
node on both platforms

BLAS (Basic Linear Algebra Subsystem) Level 3 operations include various
forms of matrix multiply and linear systems solving, they are essential for
scientific computing. We uses machine learning to optimize the runtime of
multi-thread BLAS Level 3 operations, as an extension to the Architecture
and Data-Structure Aware Linear Algebra (ADSALA) library to provide full
support over BLAS III operations [1]. Our method predicts the best number of
threads for each operation based on the matrix dimensions and the system
architecture and is synergistic to all single-thread optimizations.

We test our method on two HPC platforms with Intel and AMD processors
using multi-threaded MKL and BLIS as baseline BLAS implementations. We
achieve average speedups from 1.07 to 2.9 across BLAS III operations,
compared to using the maximum number of threads. Our work shows the
effectiveness and generality of the ADSALA approach for optimizing BLAS
routines on modern multi-core systems.

Predict the Best 𝒏𝐭𝐡𝐫𝐞𝐚𝐝𝐬:

1. Predict the running time’s for given input (𝒙) with
𝑛!"#$%&' < 𝑛(%):

#𝑇*+,- 𝒙, 𝑛!"#$%&' = model 𝒙, 𝑛!"#$%&'

2. Select the 𝑛!"#$%&' with the least running time:
,𝑛!"#$%&' = argmin

.!"#$%&'
#𝑇*+,-(𝒙, 𝑛!"#$%&')

Machine Learning Design

Software Design

Some Runtime Features:
 1. We do runtime inference of the ML model; 2. The model is maintained in memory for multiple inferences

Runtime Part

Data Gathering
1.Parameter Space:

1.Matrix dimensions: 𝑚, (𝑘, 𝑛)
2.Number of threads to use: 𝑛!"#$%&'
3.Target: running duration

2. Quasi-random sampling enables even-
coverage across the parameter space, with an
upper limit on memory size for matrices -> see
heatmap

Feature Engineering
1. Feature Extraction:
• Size of matrices and FLOPS needed
• All above with multi-thread speedup

2. Feature Selection:
Highly correlated features are considered
redundant and are removed (90%)

Motivation
Observations:
1. Multi-threaded BLAS

III do not choose

𝒏𝐭𝐡𝐫𝐞𝐚𝐝𝐬 for optimal

performance.

Model Candidates

1. Speedup across all

BLAS III operations

2. Average speedup

from 1.07 to 2.89

3. Better speedup is

observed on Setonix

4. dsymm shows best

speedup, sgemm

shows least speedup

Results Summary
BLAS Illustration Setonix (AMD)

Gadi (Intel)

Heatmap of Best 𝒏𝐭𝐡𝐫𝐞𝐚𝐝
Setonix (AMD)

Gadi (Intel)

Profiling Analysis

Some Extreme Speedups:
• Outstanding Speedups are obtained for some slim input matrices
• Time Breakdown shows time reduction in all three components
• Data copy yields the largest fraction of time reduction

Introduction

[1] Xia, Y., De La Pierre, M., Barnard, A.S. and Barca, G.M.J., 2023, May. A Machine Learning Approach Towards Runtime
Optimisation of Matrix Multiplication. In 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
(pp. 524-534). IEEE.

Auto-Select the Best model:

 We select the largest speedup (estimated) in
from model candidates:

𝑠 = 6&$(%)*!
6+,!"#$%&'76-.&$*_$0%*)%!1.2

,

which helps choose the best balance between:
1. Low Error
2. Fast Model Inference

BLAS III Operations:
1. Matrix Multiply

1. GEMM
2. SYMM
3. SYRK
4. SYR2K
5. TRMM

2. Solve for Matrix
1. TRSM

Little Room
for Speedup

Big Room
for Speedup

NUMA System

Histogram for Optimal Thread Counts with Multi-Threaded
GEMM (General Matrix Multiply)

Experiment Setup:
• Run on two-socket Intel Xeon

with 48 physical cores, no
hyper-threading

• Using MKL implementation of
BLAS, with GEMM input
maximum size 100MB

BLAS Modelling on NUMA* System

2. Simply applying a fixed 𝒏𝐭𝐡𝐫𝐞𝐚𝐝𝐬 is far from being optimal.

3. We need an algorithm to predict the best 𝑛!"#$%&' with high accuracy and

high speed.

2. Modelling on NUMA systems is complex with asymmetric memory access

3. Fitting for different machines is time-consuming

1.

BLAS modelling is

complex with both

computation/me

mory complexity

and startup effect

