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BLAS Illlustration

Introduction BLAS Il Operations:
Program 1. Matrix Multiply
1. GEMM
Linear Aleeb 2. SYMM
inear Algebra
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- 5. TRMM
BLA .
(Unified Interface) 2. Solve for Matrix
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BLAS (Basic Linear Algebra Subsystem) Level 3 operations include various
forms of matrix multiply and linear systems solving, they are essential for
scientific computing. We uses machine learning to optimize the runtime of
multi-thread BLAS Level 3 operations, as an extension to the Architecture
and Data-Structure Aware Linear Algebra (ADSALA) library to provide full
support over BLAS lll operations [1]. Our method predicts the best number of
threads for each operation based on the matrix dimensions and the system
architecture and is synergistic to all single-thread optimizations.

We test our method on two HPC platforms with Intel and AMD processors
using multi-threaded MKL and BLIS as baseline BLAS implementations. We
achieve average speedups from 1.07 to 2.9 across BLAS lIl operations,
compared to using the maximum number of threads. Our work shows the
effectiveness and generality of the ADSALA approach for optimizing BLAS
routines on modern multi-core systems.
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2. Modelling on NUMA systems is complex with asymmetric memory access

3. Fitting for different machines is time-consuming

Machine Learning Design
Predict the Best N, reads:

Nthreads < NMmax:

Nthreads

from model candidates:
T qefault

1. Predict the running time’s for given input (x) with

7\TBLAS (X, Nthreads) = model(x, Nihreads)

2. Select the npyreaqs With the least running time:
Nihreads — argmin(TBLAS (x, nthreads))

Auto-Select the Best model:

We select the largest speedup (estimated) in
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2. Fast Model Inference

Data Gathering

1.Parameter Space:
1.Matrix dimensions: m, (k,n)

3.Target: running duration

Tﬁthreads +Tmode1_eva1uation

which helps choose the best balance between:

2.Number of threads to use: nipreads

coverage across the parameter space, with an

Model Candidates

Good with Data Size
Model : .
: Models Parametric Data Require-
Catagories
Imbalance ment
Linear Regression Medium
Linear ElasticNet Y No Medium
Models - :
dayesian
; mall
Regression Sma
Decision Tree
XGBoost
Tree
Based AdaBoost No Yes Medium
Models Random Forest
LightGBM
SVM Regressor Small
Other No No
Models KNN Regressor Medium
7 Big Room Little Room
for Speedup for Speedup
Heatmap of Best nyread ' 'l
Setonix (AMD) T
Threads used with best performance
1.0m dsymm 1.0 e dsyrk 1.0m dsyr2k 1.0m dtrmm L.0mr dtrsm
o.miﬁié 0.6m ‘;M 0.6mf} 0.6m| 0.6m
= 0.2m:§ % 0.2m (’ X 0.2m 2&', € 0.2m ;_ € 0.2m
62.0kb e 62.0k 62.0k 62.0k m‘\‘\ - 62.0k
0.0k 04k 1.8k 4.0k 0.0k 04Kk 18k 4.0k 7.l 0.0k 05k 19k 44K 0.0k 0.4k 18k 40k 7. 0.0k 04k 1Bk 40k 7.k
1.0mp; 1.0m s L Lompz seyr2k 1.0mp= strmm 1.0m strsm
% ‘w,- s%% =-‘:. v
0.6m 0.6m ‘; 0.6m :(% 0.6m 0.6m|’
€ 0.2m| 3 % 0.2m A X 0.2m \Ei € 0.2m|.3 € 0.2mf ¥ *,\
62.0k] =i L5 62.0k| 1 62.0k] s 62.0K] 17 AN

2. Quasi-random sampling enables even- . .

00k 06Kk 25k 5.6k 10, 0.0k 0.6k 2.5k 5.6k 10.
n

0.0k O.ék. 2.5k 5.6k 10. 0.0k 0.6k 2.5I'< 5.6k
n m

10.

0.0k .O.Gk. 2.5k 5.6k 10.0k
m

Results Summary

1. Speedup across all

BLAS Il operations

2. Average speedup
from 1.07 to 2.89

3. Better speedup is

observed on Setonix

4. dsymm shows best
speedup, sgemm

shows least speedup

Training Dataset Size:

Around 1100 data points
for each BLAS operation.
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Data Gathering Cost: Model Training and

Around 6 hours with 15

Selection Cost:

Around 4 hours on one

nodes on both platforms node on both platforms
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Some Runtime Features:

1. We do runtime inference of the ML model;
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upper limit on memory size for matrices -> see Gadi (Intel) EE .
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2. The model is maintained in memory for multiple inferences

Profiling Analysis
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BLAS Op and Input Matrix Shapes

Some Extreme Speedups:

e Qutstanding Speedups are obtained for some slim input matrices
 Time Breakdown shows time reduction in all three components

* Data copy vields the largest fraction of time reduction
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